Hydrogen sulfide induces serum-independent cell cycle entry in nontransformed rat intestinal epithelial cells.

نویسندگان

  • Bart Deplancke
  • H Rex Gaskins
چکیده

Hydrogen sulfide (H2S), produced by commensal sulfate-reducing bacteria, is an environmental insult that potentially contributes to chronic intestinal epithelial disorders. We tested the hypothesis that exposure of nontransformed intestinal epithelial cells (IEC-18) to the reducing agent sodium hydrogen sulfide (NaHS) activates molecular pathways that underlie epithelial hyperplasia, a phenotype common to both ulcerative colitis (UC) and colorectal cancer. Exposure of IEC-18 cells to NaHS rapidly increased the NADPH/NADP ratio, reduced the intracellular redox environment, and inhibited mitochondrial respiratory activity. The addition of 0.2-5 mM NaHS for 4 h increased the IEC-18 proliferative cell fraction (P<0.05), as evidenced by analysis of the cell cycle and proliferating cell nuclear antigen expression, while apoptosis occurred only at the highest concentration of NaHS. Thirty minutes of NaHS exposure increased (P<0.05) c-Jun mRNA concentrations, consistent with the observed activation of mitogen activated protein kinases (MAPK). Microarray analysis confirmed an increase (P<0.05) in MAPK-mediated proliferative activity, likely reflecting the reduced redox environment of NaHS-treated cells. These data identify functional pathways by which H2S may initiate epithelial dysregulation and thereby contribute to UC or colorectal cancer. Thus, it becomes crucial to understand how genetic background may affect epithelial responsiveness to this bacterial-derived environmental insult.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soluble uric acid induces inflammation via TLR4/NLRP3 pathway in intestinal epithelial cells

Objective(s): Hyperuricemia is a risk for cardiovascular and metabolic diseases, but the mechanism is ambiguous. Increased intestinal permeability is correlated with metabolic syndrome risk factors. Intestinal epithelial cells play a pivotal role in maintaining intestinal permeability. Uric acid is directly eliminated into intestinal lumen, however, the mechanism and e...

متن کامل

Hydrogen Sulfide Lowers Proliferation and Induces Protective Autophagy in Colon Epithelial Cells

Hydrogen sulfide (H(2)S) is a gaseous bacterial metabolite that reaches high levels in the large intestine. In the present study, the effect of H(2)S on the proliferation of normal and cancerous colon epithelial cells was investigated. An immortalized colon epithelial cell line (YAMC) and a panel of colon cancer cell lines (HT-29, SW1116, HCT116) were exposed to H(2)S at concentrations similar ...

متن کامل

Protective Role of Rheum tanguticum Polysaccharides 1 on Radiation-Induced Intestinal Mucosal Injury

The protective effects of Rheum tanguticum polysaccharide 1 (RTP1), which is extracted from the Chinese traditional medicine Rheum tanguticum, on radiation-induced intestinal mucosal injury was investigated. Rat intestinal crypt epithelial cells (IEC-6 cells) and Sprague-Dawley rats were each divided into control, irradiated and RTP1-pretreated irradiated groups. After irradiation, cell surviva...

متن کامل

Protective Role of Rheum tanguticum Polysaccharides 1 on Radiation-Induced Intestinal Mucosal Injury

The protective effects of Rheum tanguticum polysaccharide 1 (RTP1), which is extracted from the Chinese traditional medicine Rheum tanguticum, on radiation-induced intestinal mucosal injury was investigated. Rat intestinal crypt epithelial cells (IEC-6 cells) and Sprague-Dawley rats were each divided into control, irradiated and RTP1-pretreated irradiated groups. After irradiation, cell surviva...

متن کامل

Differential regulation of cyclooxygenase-2 in nontransformed and ras-transformed intestinal epithelial cells.

To determine signaling pathways responsible for modulation of COX-2 expression in nontransformed and transformed epithelial cells, we studied a rat intestinal epithelial (RIE) cell line expressing constitutively active Ras and RhoA. Expression of COX-2 protein was higher in RIE-RhoA(63L) (four-fold) and RIE-Ras(12V) (seven-fold) cells than in parental cells. Prior work suggests that Ras hyperac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 17 10  شماره 

صفحات  -

تاریخ انتشار 2003